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ABSTRACT. This paper aims to develop new theoretical foundations for
solving convex multi-objective fuzzy optimization problems in a quotient
space of fuzzy numbers. The primary objective is to extend the Karush-
Kuhn-Tucker optimality conditions, originally designed for single-objective
fuzzy optimization, to the multi-objective setting under convexity and dif-
ferentiability assumptions. The methodology relies on defuzzification using
midpoint functions, derived from a-cuts and Mares cores, which transform
fuzzy problems into classical equivalents. The proposed framework allows
for the definition of Pareto, weak Pareto, and strong Pareto solutions in
a fuzzy context. Key results include the necessary and sufficient Karush-
Kuhn-Tucker optimality conditions. This approach bridges the gap be-
tween fuzzy mathematical theory and practical optimization techniques in
uncertain environments.
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1. INTRODUCTION

Fuzzy multi-objective optimization is an advanced approach to classical opti-
mization. It aims to solve problems involving multiple objectives while accounting
for the uncertainty and vagueness of the data. It combines two key areas: multi-
objective optimization, which finds optimal solutions for competing criteria, and
fuzzy logic, which represents and manipulates uncertainty. The primary objective of
fuzzy multi-objective optimization is to provide solutions that address the complex-
ity and uncertain nature of real-world problems. It allows for the consideration of
conflicting objectives. It finds compromises between them, offering a more realistic
perspective for decision-making. This approach is used in many fields, including
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engineering, management, finance and planning, where decisions are often made in
complex, uncertain environments. Then the notion of Pareto optimality is used to
characterize the set of solutions for a multi-objective optimization problem. The
search for Pareto solutions often relies on defuzzification techniques. These tech-
niques transform a fuzzy optimization problem into a classical optimization prob-
lem. These techniques are used in both single- and multi-objective cases, regardless
of the nature of the problem variables (e.g., continuous, discrete, binary), to facili-
tate the search for solutions. Several researchers have focused on different solution
techniques for mono-objective fuzzy optimization (See, for example, [1, 2, 3, 4]).

However, the resolution technique that will be used for the remainder of our work
is that of Nanxiang Yu and Dong Qiu [4]. Indeed, for a single-objective optimization
problem of the type:

min F(t) = F(t1,t2,- - , 1),
st

(1) <0, j=1,2,,m,

t e R™.

(1.1)

Let Q ={t € R" : ¢g;(t) <0, j=1,2,--- ,m} be the feasible set of problem (1.1).

For solving a problem of the type (1.1), the defuzzification technique used consists
of determining the a-cuts of each equivalence class associated with its Mare§ core
[5]. Then, we calculate the midpoint function associated with the objective func-
tion. Thus, by applying this defuzzification strategy to problem (1.1), we obtain the
following problem:

(1.2) min (Mp(t)(a)) :

where Mz, () is the midpoint function of E(t), a €0,1].

This midpoint function, although it offers many advantages (See [4]) for solving
mono-objective optimization problems, has not yet been tested in the multi-objective
case. This motivates our work to contribute to the literature on the use of midpoint
functions in multi-objective optimization.

Indeed, several researchers previously embarked on the quest for new techniques
to solve fuzzy optimization problems. This would enable them to convert fuzzy op-
timization problems into classical optimization problems. Among these researchers
were Bellman and Zadeh [6], who inspired the development of fuzzy optimization by
proposing aggregation operators that combine fuzzy objectives and fuzzy decision
spaces.

Motivated by this inspiration, numerous studies have been conducted on fuzzy
optimization problems. Venkatesh et al. [7] propose a hybrid approach that com-
bines machine learning and fuzzy optimization. In this approach, the predictions
of the machine learning (ML) model are incorporated as fuzzy variables into a
mixed-integer linear programming (MILP) model. A penalty function aligns the
optimal decisions with the ML suggestions while ensuring operational feasibility.
Vamarzani et al. [8] use a hybrid approach that combines robust fuzzy optimization
and Chebyshev-type multi-choice goal programming to design a sustainable waste
management network that balances economic, social, and environmental dimensions
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under uncertainty. Agrawal et al. [9] apply multi-criteria fuzzy optimization tech-
niques, specifically F-SWARA, to determine the weights of financial ratios. They
then use F-MOORA to rank Indian manufacturing firms based on their financial
performance. Fernandez et al. Ferndndez et al. [10] model uncertain task durations
using triangular fuzzy sets and incorporate them into a mixed-integer linear program-
ming (MILP) model with delay penalties. The resulting fuzzy solution, computed
using a MILP solver, provides a robust schedule for a single-machine construction
project that tolerates imprecision while minimizing penalties. Wu [11] proposes a
hybrid approach to fuzzy optimization that combines Shapley values from coopera-
tive game theory with an evolutionary algorithm to explore non-dominated solutions
and identify the most robust one. Sama and Some [12] propose a method based on
the concept of a null set to solve mono-objective nonlinear fuzzy optimization prob-
lems. They transform the fuzzy problem into a deterministic, bi-objective problem
and apply Karush-Kuhn-Tucker (KKT) optimality conditions to find an optimal so-
lution. Then, they reconstruct the fuzzy solution using fuzzy algebraic operations.
James and Jose [13] establish the Karush-Kuhn-Tucker optimality conditions for
a fuzzy optimization problem in which the objective function is formulated using
triangular g-rung orthopair fuzzy sets. The authors define the Hukuhara differen-
tiability of these fuzzy functions and derive adapted KKT conditions to identify
non-dominated solutions. Wu [2, 3] presented the KKT conditions for optimization
problems with convex constraints and fuzzy objective functions in the class of all
fuzzy numbers, considering the concepts of the Hausdorfl metric and the Hukuhara
difference. Chalco-Cano et al. [1] discussed the KKT optimality conditions for a
class of fuzzy optimization problems using strongly generalized differentiable fuzzy
functions. This concept of differentiability is more general for fuzzy applications
than Hukuhara differentiability. These results in fuzzy optimization are based on
well-known and widely used algebraic structures of fuzzy numbers, and the differ-
entiability of fuzzy applications is based on the concept of Hukuhara difference.
Operations in the set of fuzzy numbers are generally obtained by Zadeh’s extension
principle [14]. However, these operations may present some drawbacks for both the-
ory and practical application. Specifically, no fuzzy number has an inverse element
related to addition, whereas the inversion of addition is fundamental in arithmetic.
Most researchers, such as [15, 16, 17, 18], propose different methods for constructing
opposites of fuzzy numbers. But, these methods are innovative and have their own
value, and most of them are abstract. In [5], Qiu et al. intuitively presented a
method to find the inverse operation in the quotient space of fuzzy numbers based
on the equivalence relation of Mares [19, 20], which has the desired group properties
for the addition operation [18, 21] on median functions. In [5], Qiu et al. further
studied the differentiability properties of such functions in the quotient space of
fuzzy numbers.

In the spirit of our predecessors, we propose a new theory to solve fuzzy multi-
objective optimization problems. To do so, we will extend the KKT optimality con-
ditions for single-objective fuzzy optimization problems in a quotient space of fuzzy
numbers [4] to fuzzy, multi-objective, convex optimization problems in a quotient
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space of fuzzy numbers. Our plan is outlined below. Section 2 presents the funda-
mental concepts of our new theory. In Section 3, we formulate fuzzy, multi-objective
programming problems with fuzzy-valued objective functions in a quotient space of
fuzzy numbers. We also propose solution concepts and derive KKT conditions for
these problems by introducing Lagrange multipliers.

2. PRELIMINARIES

Definition 2.1 ([5, 22]). Let f : [a,b] — R be a function. f is said to be of a
bounded variation, if there exists a C' > 0 such that

(2.1) Zlf(%:) —flzi)[<C

for every partition a = zg < 1 < 29 < ... < z, = b on [a,b]. The set of all
functions of bounded variation on [a,b] is denoted by BV [a, b].

Definition 2.2 ([5, 22]). Let f : [a,b] — R be a function of bounded variation.
Then the total variation of f on [a,b], denoted by V?(f) , is defined by

(2.2) VIf) = sup Z|f<xi> — f(ziz)l,

where p represents all partitions of [a, b].

Definition 2.3 ([3, 12, 23, 24, 25]). Let X be a universe set. Then a fuzzy set A
on X is defined as follows:

A= {(x,,u(x)),x e X} with 05(z) 1 X — [0, 1].
w5 is called a membership function of the set A.

Definition 2.4 ([22, 12, 23, 24, 25]). Let A be a fuzzy set in X and a € [0, 1]. Then
the a-cut of the fuzzy set A is a set denoted by A and is defined by :

(2.3) A% = {x €X|pi(x) > a}.

Definition 2.5 ([2]). A fuzzy subset A is called a fuzzy number, when the following
conditions are satisfied:

(1) all the a-cut of A are non-empty for 0 < a < 1,

(2) all the a-cut of A are closed intervals in R,

(3) the support of A is bounded.

Example 2.6 ([3]). Let A = (a,b,¢,d), with a,b,c and d € R. We will say that A
is a trapezoidal fuzzy number, if its membership function is given by:

=2 if a<x<b,

b—a

1 if b<zx<ec
2.4 i(z) = - =7
(24) Hale) i:ﬁ if e<x<d,

0 otherwise.
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Its a-cut has the following simplified form:
(2.5) A% = Ja(b—a) + a,a(c —d) +d] VYae€|0,1].

Figure 1 is a graphical representation of its membership function.

FIGURE 1. Membership function of a trapezoidal fuzzy number

Subsequently, we will denote by N (R) the set of all fuzzy numbers on R. Then
for Z € N(R) it is well known that the a-cut is a closed, bounded interval of R.
Thus we write [Z]* = [Z(a), Zr(«)] a non-empty closed bounded interval in R for
a € [0, 1], where Zr (o) denotes the left endpoint of [#]* and Zr(a) denotes the right
endpoint of [£]*. These are functions of «.

Definition 2.7 ([4, 19, 20, 26]). We say that a fuzzy number § € N (R) is symmetric,
if 5= — 5. In other words:
(2.6) Vo € R, ps(x) = ps(—x).

We denote the set of all symmetric fuzzy numbers by S.

Definition 2.8 ([5, 19, 27]). Let Z, § € N(R), and we say that Z is equivalent to
7, if there exist two symmetric fuzzy numbers §7,55 € S such that £ + §1=¢ + $5
and then, we denote this by z ~ .

It is easy to verify that the equivalence relation defined above is reflexive, sym-
metric, and transitive [26]. Let denote the fuzzy number equivalence class containing
the element and denote the set of all fuzzy number equivalence classes by A (R)/S.

Definition 2.9 ([17, 21, 28, 27]). For a fuzzy number & € N (R), we define a
function Zy : [0,1] — R by assigning the midpoint of each a-level set to Zy(a) for
all a« € [0,1], i.e.,

71 (a) + 7r(a)
S R

Then the function Zy : [0,1] — R will be called the midpoint function of the fuzzy
number .

(2.7) in(a) =

5
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Lemma 2.10 ([4, 5]). For any & € N(R), the midpoint function Ty is continuous
from the right at 0 and continuous from the left on [0,1]. Furthermore, it is a
function of bounded variation on [0, 1].

Definition 2.11 ([4, 20]). Let Z € N (R) and let & be a fuzzy number such that
Z =2+ 5 for some § € S, and if # = § + §1 for some § € N(R) and s7 € S, then
§1 = 0. Then the fuzzy number & will be called the Mares core of the fuzzy number

Z.

Definition 2.12 ([4, 27]). Let () € N(R)/S and we define the midpoint function
M(fc) : [0, ].] — R by

(2.8) Mizy (@) = () for all a € [0,1],

where Z is the Mares core of 7.

Definition 2.13 (See [4, 5]). Let (%), (g) € N(R)/S and we define the sum, the
product and scalar multiplication of these two fuzzy number equivalence classes as
a fuzzy equivalence class (Z) € N'(R)/S, which satisfies the condition:

(2.9) Mez) (@) + Mg (@) = Mz (@),
for all a € [0,1] and we denote this by
(2.10) (@) (+) () =(@(+)5)=(2)-
(2.11) Miz) () - Mgy (@) = Mgz (a),
for all « € [0, 1] and we denote this by
(2.12) (@)(:)(9)=(2)-

We define A\(:)(Z)=X(Z), A € R by
(2.13) ME)=(T)A=(AT).

It is obvious that Mz () = Mz (@) = AMzy () for all a € [0, 1].

(
Deﬁniti0n~2.14 ([4]). Let (z), (g) € N(R)/S.
(i) (%) < (@), if Mz)(a) <Mz () for all a € [0, 1].
(i) (@) < (), if (¥) <(y) and there exists at least one ay € [0,1] such that
Miz) (o) < M) (o).

(iii) If (Z) <(g) and (§)<(Z), then (Z)=(7).

Sometimes we may write (§)>(%) instead of (Z)<(f) and write (§)>(%) instead
of (£)< (7). Note that ”<” is a partial order relation on N'(R)/S

Definition 2.15 (See [, 5]). Define
dsup : N(R)/S x N(R)/S — RT U {0} by

(2.14) deup (%), (§)) = sup 1M Mz (@) — Mgz ()]

for all (z), (g) € N(R)/S. Then (N(R)/S),dsup) is a metric space [5]
In this paper, we always suppose that the range of fuzzy mappings is the set of

all fuzzy number equivalence classes.
6
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Definition 2.16 ([27]). Let F:T — N(R)/S be a fuzzy mapping, where T' =
[a,b] C R. Then F is said to be differentiable at t € T, if there exists an F'(t) €
N(R)/S such that

. Ft+n) (=) F(t) 2\ _
(2.15) lim du ( - F (t)> = 0.

If t = a(orb), then we consider only h — 0% (or h — 07).
Lemma 2.17 ([27]). F: T — N(R)/S is differentiable on T if and only if
(1) Mpg,(a) is differentiable with respect to t € T', for all a € [0,1]. That is,
0
<atMF(t)(oz)) exists and is of bounded variation with respect to « € [0, 1] for
allt €T,
0
(2) the mappings Mp(t)(a) are uniformly differentiable with the derivatives (atMp(t)(a)> ,
i.e., for each t € T and e > 0, there exists a § > 0 such that

Mé(rn) (@) — Mﬁ(t)(a) 0

h - &Mﬁ(t)(a) <e¢

(2.16)

for all |h] € (0,6) and o € [0, 1].

Definition 2.18 ([4]). Let (@)=({d1), (d2), -, {(@n))T € (W(R)/S)" and t = (t1,ta, - ,t,)T €
R™ be an n-dimensional fuzzy number equivalence class vector and n-dimensional
real vector, respectively. We define their product (a)Tt as follows:
(2.17) (@)=Y (diti=(dn)t + (da)ta + - + (dn)tn,
i=1
which is a fuzzy number equivalence class.

Definition 2.19. Let F; : R™ - NR)/S,i=1,2,--- ,pand g; : R" - N(R)/S, j =

1,2, ,m, fuzzy-value functions. Then a multi-objective optimization problem in a
quotient space of fuzzy numbers with fuzzy constraints is of the following form:
min F(t),
st
(2.18) .
9()<(0),
t e R,

. . - N T T
with F(t)i(Fl(t)aFZ(t)v e qu(t)> ) g(t>£(gl(t)7§2(t)7 T 7gm(t)) andt = (t17t2u e 7tn) S
R™.
Let x = {t € R": §;()<(0), j = 1,2,...,m} be the feasible domain of (2.18).
Definition 2.20. An admissible solution t* € x is said to be efficien}f (Pareto
optimal), if there does not exist another ¢ € x such that F(t) dominates F'(t*).

Definition 2.21. An admissible solution t* € y is said to be weakly efficient (weakly
Pareto optimal), if there does not exist another ¢ € x such that F(t)<F(t*), i.e.,
Fi(t)<Fy(t*), i=1,---,p.
7
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Definition 2.22. An admissible solution t* € x is said to be strongly efficient
(strongly Pareto optimal), if there does not exist another ¢t € x, t # t* such that
F)<F(t).

Remark 2.23. Let xjp, Xp, XFp be the sets of weakly Pareto optimal, Pareto

optimal, and strongly Pareto optimal solutions respectively. We have the following
relation

Xfp € Xp & XFp-

Definition 2.24 ([1]). Let F : Q@ — N(R)/S be a fuzzy mapping, where Q is
nonempty convex subset in R”. F is said to be convez on €, if for any s, t € Q and
A € [0,1], we always have F(As 4 (1 — \)t)<AF(s) (+) (1 — \)E(t). F is said to be
concave, if —F is convex.

Theorem 2.25 ([1]). Let F : Q — N(R)/S be a fuzzy mapping, where Q is a
nonempty convex subset R™. Then F is convezr on Q if and only if Mﬁ(t)(oz) is
convex with respect to t € Q for all o € [0, 1].

Proof. See the proof of Theorem 3.3 in [29]. O

Remark 2.26. Problem (2.18) is convex and differentiable if all the fuzzy-valued
functions and the fuzzy-valued constraint functions are all convex and differentiable.

Definition 2.27 ([30]). Let F: Q — N(R)/S be a differentiable fuzzy mapping,
where ) is a nonempty convex subset in R™. F'is said to be pseudoconvez on Q, if
for any s, t € Q such that F(s)<F(t), we always have
(2.19) VE)T (s —t)<(0).

In the following, we will assume that problem (2.18) is convex and differentiable.

3. RESULTS

Let us consider the problem (2.18). By determining the a-cuts of each equivalence
class associated with its Mares core, then, by calculating the midpoint functions
associated with the objective functions and constraint functions, and by applying
this strategy to problem (2.18) we obtain the following problem

minMz ) (@),

minMg, , (a),

minMg ;) (),
st

t € R,
8
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with Mz, (@), Mg, 1) () respectively the midpoint functions of Fi(t),i=1,2,---,p
and g;(t), j =1,2,--- ,m with a € [0, 1].

Let ® = {t € R" : Mz () < 0,5 = 1,2,--- ,m} be the feasible domain of
problem (3.1).

We present the links that exist between the Pareto optimal solutions of the prob-
lem (3.1) and the Pareto optimal solutions of the initial problem (2.18) in the form
of the following theorems.

Theorem 3.1. If t* is a Pareto optimal solution of problem (3.1) for all « € [0,1]
then t* is a Pareto optimal solution of problem (2.18).

Proof. Let t* € ® be a Pareto optimal solution of (3.1).

Assume that t* is not a Pareto optimal solution of problem (2.18). Then there
exists # € y such that F;(£)<Fy(t*) Vi = 1,--- ,p and F},(£)<Fy(t*) for at least one
k € {1,---,p}. Switching to the midpoint functions, there exists a € [0, 1] such
that Mz, (@) < Mg (@) Vi=1,-- ,p and Mg, () <Mp 4 (a) for at least one
k € {1,---,p}. This contradicts the fact that t* is a Pareto optimal solution of (3.1)
for all o € [0,1]. Thus ¢* is a Pareto optimal solution of problem (2.18). O

Theorem 3.2. If t* is a weakly Pareto optimal solution of problem (3.1) for a €
[0,1], then t* is a weakly Pareto optimal solution of problem (2.18).

Proof. Let t* € ® be a weakly Pareto optimal solution of problem (3.1). Suppose t*
is not a weakly Pareto optimal solution of problem (2.18) . Then there exists ¢ € x
such that Fy(£)<F;(t*), Vi =1,--- ,p. Switching to midpoint functions, there exists
o € [0,1] such that Mz (@) < Mp, oy (), Vi =1,- -+, p. With the strict inequality,
that is Mz 5 () < Mﬁi(t*)(a). In particular, this relationship holds for a* € [0, 1],
which contradicts the fact that t* is a weakly Pareto optimal solution of problem
(3.1) for a* € [0, 1]. O

In the following, we will provide the Karush-Kuhn-Tucker optimality conditions
for Pareto optimal solutions.

Remark 3.3. Considering Lemma 2.17 and Theorem 2.25, problem (3.1) is convex
and differentiable if and only if problem (2.18) is convex and differentiable.

Definition 3.4. Let the constraint functions M; 4)(a) < 0 of problem (3.1) be
continuously differentiable at ¢*. The problem satisfies the Kuhn-Tucker constraint
qualification at t* if for any d € R™ such that Mvgj(t*)(a)Td < 0 for all j € J(t*)
(with J be the set for the active constraints of problem (3.1)), there exists a function
a : [0,1] = R™ which is continuously differentiable at 0 and some real scalar 5 > 0
such that a(0) =t*, My (@) <0 forall0 <t <1 and a'(0)= fd.

Theorem 3.5. Let ® be the convex feasible set and t* € ® be a feasible solu-

tion of problem (3.1). Suppose that the real-valued constraint functions M g;(t)(c)

and fuzzy-valued objective functions F; are conver on R™ and continuously differen-

tiable at t* for all j = 1,2,--- . m and i = 1,2,--- ,p. If there exist positive real-

valued functions (positive Lagrange function multipliers) \;(«) defined on [0,1] for
9
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i =1,2,---,p and nonnegative real-valued functions p;(a) (nonnegative Lagrange
function multipliers) defined on [0 1] such that

p
i) Z)‘i(a)MVFi(t* )+ Z,u7 aMyg, =) (a) =0, for all o € [0, 1],

i=1
(i) pj()Mg, 1y (a) = 0, for all a € [0,1] and for all j =1,2,...,m,
then t* is a Pareto optimal solution of problem (2.18).
Proof. We are going to prove this result by contradiction. Suppose that ¢* is not a
Pareto optimal solution. Then there exist #(# ¢*) € Q such that F;(f)<F;(t*), i.e.,
there is a* € [0, 1] such that
(3.2) Mg (") < Mg, 4 (@¥).

We now define a real-valued function

(3.3) Z)\ M (@)

Since the fuzzy mappings F,, i =1,2,---,p are convex on R" and continuously
differentiable at ¢*, by Theorem 2.25 and Lemma 2.17 we see that f is also convex
on R™ and continuously differentiable at t*.

Furtheremore, we have V f(t) Z)\ @) VMg (@) = Z)\ )My 7,y (). From

(3.3) and in accordance with COHdlthnb (1) and (ii) of thlb theorem, we derive the
following two new condltlons for any fixed o* € [0, 1]:

(a)  Vf(@) +ZM3 My, (@) =0,
7j=1
(b)  pi(a™ Mg, ¢+y(a*), forall j =1,2,...,m
If (a) and (b) have the same conditions as Theorem 25 in [1], then we obtain that
t* is an optimal solution of the real-valued objective function f, i.e.,

(3.4) f@) < f(t)

for any t € ®(f # t*). From (3.2) and (3.3), we see that f(#) < f(¢*) which
contradicts inequality (3.4). Thus we conclude that t* is indeed a Pareto optimal
solution of problem (2.18). O

Lemma 3.6 ([1]). Let ® = {t € R" : My () < 0,5 = 1,2,--- ,m} be a feasible
set and t* € Q). Assume that Mz, are differentiable at t* for all j =1,2,--- ,m. Let
J={j:g;(t) =0} be the index set for the active constraints. Then we have

(3.5) D C{d €R" : Myg, (1) ()Td <0 Vj € J},

where D is the cone of feasible directions of ® at t* defined by

(3.6) D={deR":d#0, there exists a 6 > 0 such that t* +nd € & Vn € (0,9)}.

Lemma 3.7 ([1]). Let A and C be two matrices. Exactly one of the following
systems has a solution:
o system I: Az <0, Az # 0, Cx <0 for some x € R",
o system II: AT\ + CTu =0 for some (\,u), A >0, u>0.
10
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Theorem 3.8. Let ¢ be the conver feasible set and t* € ® be a feasible solution
of problem (3.1). Suppose that the real-valued constraint functions ng(t)(a) are
conver and continuously differentiable at t* for j =1,2,---  m and the fuzzy-valued
objective functions F; are continuously differentiable at t* for i = 1,2,--- ,p. We
additionally assume that each of the fuzzy-valued objective functions is either strictly
pseudoconvex or convex at t*. If there exist positive real-valued functions A;(a)
defined on [0,1] for all i = 1,2,--- ,p and nonnegative real-valued functions p;(c)
defined on [0, 1] for and (Lagmnge multipliers for j =1,2,--- ,m such that

Z)‘ MVF (t* )+ Zug aMyg, =) (a) =0 for all a € [0, 1],

(),uj()gj(t*)()fOforallae[O1}andalljf12 m,
then t* is a Pareto optimal solution of problem (2.18).
Proof. We know that each of the fuzzy-valued objective functions is either strictly
pseudoconvex or convex at ¢*. Then the functions M . (a) are either strictly
pseudoconvex or convex at t* for all a € [0,1] and ¢ = 1,2,...,p. Suppose that ¢*
is not a Pareto optimal solution of problem (2.18). Then there exists ¢ € ® (f # ¢*)
such that F;(t)<F;j(t*). That is for o € [0,1], we have Mz ;(a*) < Mg, . ().
Since Mg, (. (") are either strictly pseudoconvex or convex at £*, we obtain
(3.7) Mvﬁi(t*)(a*)T(t_— t") <0 a*e€l0,1].
Let d =t — t*. Since Q is a convex set and ¢,t* € 2, we have

t'+nd=t"+nt—tH)=nt+1-n)t" €Q, ne(01).

According to Lemma 3.6, we obtain that d € D, which means that
(3.8) Myg, ) (@)Td <0, Vjield, o €l0,1].

According to conditions (i) and (ii) of this Theorem, we obtain the following two
new conditions for a* € [0, 1],

(a) Z)\ My £y 1y (@) + Z“J My, ) (@”) =0 for all o € [0,1],
(b) ,u]( Mg, 1=y (@*) =0, for all a* €10,1] and j =1,2,-

Let A be the matrix of rows Mvﬁi(t*)(o‘*)T for i = 1,2,--- ,p and C be the ma-
trix of rows My, (t*)(a*)T for j € J. Now consider the two systems of Lemma 3.7.
According to relations (3.7) and (3.8), we obtain that system I has a solution
d = t — t*, and system II has no solution. This means that there do not exist
multipliers 0 < A\; € R for i =1,2,--- ,pand 0 < p; € R for j € J such that

P
(3.9) ZAiMVﬁg(t*)(o‘*) + ZﬂjMvéj(t*)(a*) =0.
i=1 jeJ
This contradicts conditions (a) and (b), since Zﬂ]MvgJ(t* ZﬂjMvgJ(t* )
JjeJ

with ;Mg (1) (@*) = 0 for j = 1,2,--- ;m. That is, Mg, (4=)(a*) < 0 for j ¢ J. This
11
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contradicts (i) and (ii) on the existence of multipliers 0 < \; € R for i =1,2,--- ,p
and 0 < p; € R for j = 1,2,---,m. Then we obtain that ¢* is a Pareto optimal
solution of problem (2.18). O

In particular, if there exists a* € [0, 1] such that conditions (i) and (ii) are satis-
fied, then t* is a strongly Pareto optimal solution of problem (2.18).

Theorem 3.9. Let ® be the convex feasible set and t* € ® be a feasible solution
of problem (3.1). Suppose that the real-valued constraint functions Mg () are
convex and continuously differentiable at t* for j = 1,2,--- ,m and that there exists
a fuzzy-valued objective function, say the h-th fuzzy-valued objective function Fj, :
R” — N(R)/S, such that Fy is convex and continuously differentiable at t* for
h=1,2,---  p. If there exist positive real-valued functions A(a) defined on [0,1] and
nonnegative real-valued functions pj(«) defined on [0,1] for j = 1,2,---,m such
that

(i) MaMg g, (1) (a +Zﬂy a)Myg, i) () =0, for all a € [0,1],
(ii) ,uj()gj(t)()—() forallozG[Ol]andijQ m,

then t* is a weakly Pareto optimal solution of problem (2.18).

Proof. Suppose that t* is not a weakly Pareto optimal solution. Then there exists
t € x such that F, f)<F ) fori=1,2,---,p. Thus we have

Mz, (@) <M, oy (@) for a* €[0,1].

Let f be a real-valued function defined by f = A(a*) Mg, ) (a”) for a* € [0,1]. Then
f is convex and continuously differentiable at t*. We also have f(f) < f(t*) since
A(a*) > 0. Using similar arguments to the proof of Theorem 3.5, conditions (i) and

(ii) will be contradicted. Thus t* is a weakly Pareto optimal solution of problem
(2.18). O

4. EXAMPLE

4.1. Problem. Consider the following nonlinear fuzzy multiobjective problem

max f1(X) = (2,3,4,5)23 + (1,4,6,7)23 + (3,4,5,6)z3,

max fo(X) = (7,8,12,13)23 + (13,14, 16,17)x3 + (10,11,12, 13)23
s.t:

(2,3,8,9)z; + (6,7,8,9)22 + (2,3,5,8)x3 < (16,18, 20, 22),
(7,9,12,14)z; + (11,12,13,15)x9 + (14, 18,19, 23)x3 = (26,27, 30, 38),
x; >0, (i=1,2,3).

12
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4.2. Defuzzification. By determining the medians of the a-cuts associated with
each fuzzy number, we obtain the following deterministic problem

max Mz (@) = 1 (72} + (20 + 8)23 + 923) ,
maxMj, v (a) = 3 (2023 + 3023 + 2323) ,
s.t:
1121 + 1522 + (—2a + 10)a3 < 38,
21z1 + (—a + 28)xs + 37x3 < —Ta + 64,

a € [0,1],
2 >0, (i=1,23).

4.3. Results. For w; = 0.5 and wy = 0.5, we obtain the following table (Table 1)
for different values of « (a € [0, 1]).

TABLE 1. Different solutions for different values of «

« X*

1 | (0.0000,2.1111,0.0000)
0.9 | (0.0000,2.1291,0.0000)
0.8 | (0.0000,2.1470,0.0000)
0.7 | (0.0000,2.1648,0.0000)
0.6 | (0.0000,2.1824,0.0000)
0.5 | (0.0000,2.2000,0.0000)
0.4 | (0.0000,2.2173,0.0000)
0.3 | (0.0000,2.2346,0.0000)
0.2 | (0.0000,2.2517,0.0000)
0.1 | (0.0000,2.2688,0.0000)

The graph (Figure 2) below represents the Pareto front in the decision space for
each value of a.

M_{iilde(f)_2(X"")

98 10
M_{itilde{f)_1}(X"*)

FIGURE 2. Pareto front

13
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4.4. Discutions. The resulting Pareto front represents the set of efficient solutions
to the multiobjective fuzzy optimization problem. In this problem, the functions to
be maximized depend on a confidence level parameter «. Each point on the front
corresponds to an optimal solution X™* obtained for a value of «, which illustrating
a compromise between the two objectives: Mz y)(a) and Mg (). We observe
that when o decreases, i.e. when the decision maker accepts greater uncertainty (or
fuzziness), the values of the two objective functions increase. In other words, the
more "risk” the solution (low value of «), the more numerically advantageous it is.
Conversely, a ”safe” solution (with a high «) is more cautious but gives lower values
of the objectives. The choice of a solution on the Pareto front therefore depends
on the profile of the decision-maker and the importance he gives to each objective,
represented by the weights w; and ws used in the weighted combination. If it
prioritizes reliability, it will choose a high « and assign more weight to the objective
it deems critical; if it accepts some level of fuzziness to achieve higher performance,
it will opt for a lower value of c. Thus, the optimal solution chosen depends both
on the preferences (weight) of the decision-maker and on his degree of acceptance of
the risk linked to uncertainty.

5. CONCLUSION

In this work, we have developed a new theory to solve convex fuzzy multi-objective
optimization problems within a quotient space of fuzzy numbers. Based on the no-
tions of a-cuts, midpoint functions, and the Mare$ equivalence relation, we suc-
cessfully extended the Karush-Kuhn-Tucker (KKT) optimality conditions originally
formulated for single-objective fuzzy optimization to the multi-objective case. We
introduced and rigorously defined fuzzy Pareto, weakly Pareto, and strongly Pareto
optimality concepts, and derived necessary and sufficient KKT conditions associated
with each. Our approach relies on a defuzzification process via midpoint functions,
which allows the transformation of fuzzy problems into equivalent crisp optimization
problems, enabling the application of classical convex analysis tools. The theoretical
results confirm that this transformation preserves the Pareto optimality structure,
thus offering a solid mathematical foundation for solving fuzzy optimization prob-
lems under uncertainty. Nevertheless, several limitations remain. The proposed
theory is primarily suited to convex and differentiable fuzzy-valued functions; non-
convex or non-differentiable cases are not addressed and present opportunities for
future exploration. Furthermore, one significant challenge is the difficulty in iden-
tifying the equivalence classes of fuzzy numbers, which are central to the quotient
space construction. Lastly, the theoretical findings have not yet been illustrated
through numerical examples or applied case studies. Future research will aim to
generalize the theory to broader classes of fuzzy problems and explore its applica-
tion to real-world scenarios in fields such as engineering, economics, and decision
science.
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